Реализация проекций в OpenGL Ортографическая проекция | MetodPro.ru

Реклама на сайте

Реализация проекций в OpenGL Ортографическая проекция


Ортографическая проекция в OpenGL определяется командой glOrtho. В результате выполнения данной команды происходит перемножение текущей матрицы с матрицей ортографической проекции, определяемой данной командой. Результирующая матрица становится текущей матрицей.

Синтаксис команды следующий:

 

glOrtho(left GLdouble, right GLdouble, bottom GLdouble, top GLdouble, near GLdouble, far GLdouble);

 

Как вы помните, для определения ортографического проецирования необходимо определить положение проекционной плоскости, направление проецирования и видимый объем. Рассмотрим рисунок, иллюстрирующий определение данных величин в мировой координатной системе. В OpenGL проекционная плоскость совпадает с плоскостью z=0. Направление проецирования параллельно оси z. Взгляд наблюдателя считается направленным в сторону отрицательной полуоси z.

 Видимый объем имеет форму параллелепипеда. Параметр top определяет положение плоскости, ограничивающей его сверху. Данная плоскость перпендикулярна проекционной плоскости. Параметры bottom, left, right определяют плоскости, ограничивающие видимый объем соответственно снизу, слева и справа. Эти плоскости также перпендикулярны проекционной плоскости.  

   near, far           - определяют расстояние от начала координат до передней (ближней) и задней (дальней) плоскостей отсечения видимого объема. Расстояния могут быть отрицательными. Обратите внимание на то, что near всегда меньше far. В геометрической интерпретации данное условие можно определить следующим образом: вектор наблюдения сначала пересекает переднюю секущую плоскость, а затем заднюю секущую плоскость. Используя термины ближняя и дальняя секущие плоскости, имеют ввиду положение этих плоскостей относительно наблюдателя, а не начала координат. При определении данных плоскостей, положительными считаются расстояния от начала координат в сторону отрицательной полуоси z, а отрицательными расстояния, отложенные от начала координат в сторону положительной полуоси z.

Почему все вывернуто наоборот? Ответ очевиден, видимый объем формируется в левосторонней видовой системе координат. Посмотрим, как определена видовая система координат.

Опорная точка VRP имеет координаты (0, 0, 0), вектор v (проекция VUP) совпадает с осью Y, a VPN совпадает с отрицательной полуосью Z. В видовой системе координат положительные направления откладываются вдоль положительной полуоси VPN. Все стало на свои места.

Таким образом, с помощью OpenGL нельзя определить произвольный видимый объем. Секущие плоскости всегда параллельны главным координатным плоскостям. Для создания произвольной проекции сцену придется поворачивать и переносить с помощью преобразования вида, так чтобы она попала в видимый объем требуемым образом.

Изменяя параметры команды, мы можем произвести параллельный перенос видимого объема вдоль главных координатных осей и изменить его размеры. Следовательно, мы можем определить, какие преобразования выполняет матрица проецирования.

 В библиотеке используется канонический объем, определяемый следующими плоскостями: u = -1, u = 1, v = -1, v = 1, vpn = -1, vpn = 1.  Для приведения определенного нами объема видимости к каноническому, необходимо произвести масштабирование и перенос, а для перехода к левосторонней системе координат поменять знак координаты z.

Соответствующая матрица выглядит следующим образом:

 

 

Для краткости мы обозначили переднюю и заднюю секущие плоскости первыми буквами их названий.

В главной диагонали данной матрицы, как вы помните, лежат масштабирующие коэффициенты, а в правом столбце коэффициенты переноса. (матрица дана в формате, используемом в OpenGL ).

В рассматриваемом ранее материале мы говорили, что при ортографическом проецировании на плоскость z=0 третий столбец, а в нашем случае третью строку, надо обнулить. Для чего же мы рассчитываем координату z? Для определения видимости объектов. При совпадении координат x и y будет видна точка того объекта, который расположен ближе к наблюдателю, т.е. имеет меньшее значение координаты z. Для принятия решения нам важны не величины координат, а их отношения. Следовательно, при проецировании мы можем задавать любые преобразования этой координаты. Главное, чтобы они не нарушали отношения между точками. То есть, если перед преобразованием точка P1 имеет большее значение координаты z, чем точка p2, то это отношение должно остаться в силе и после преобразования.

Обратите внимание. По умолчанию матрица GL_PROJECTION установлена единичной, а параметры видимого объема следующие:  left = -1, right = 1, bottom = -1, top = 1, near = -1, far = 1. Как же выполняется проецирование в этом случае? Подставим указанные параметры видимого объема в матрицу ортографического проецирования. Так как это канонический для OpenGL объем, то все масштабирующие коэффициенты будут равны единице, а сдвиги по осям равны 0. Получившаяся матрица отличается от единичной матрицы только знаком у масштабирующего множителя по координате Z. Следовательно, при использовании единичной матрицы переход к левосторонней системе координат не производится, и объекты рассматриваются в неправильном порядке.



Методические пособия

  • Системы автоматизированного проектирования
  • Социология молодёжи
  • Общая социология
  • Криптография
  • Проектирование трансляторов
  • Компьютерная графика
  • Моделирование систем
  • Информационная безопасность
  • Теория вычислительных процессов
  • Логические основы искусственного интелекта
  • Проектирование распределённых информационных систем